

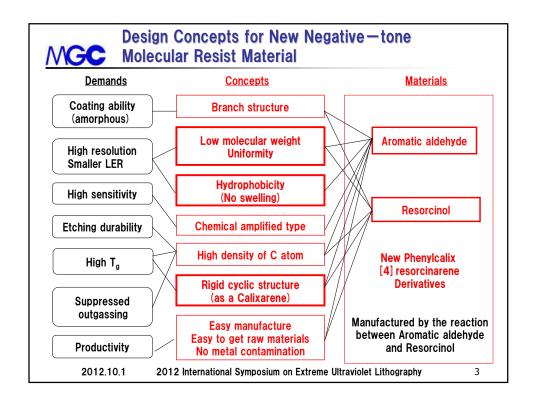
Development of New Negative-tone Molecular Resists Based on Phenylcalix [4] resorcinarene for EUVL.

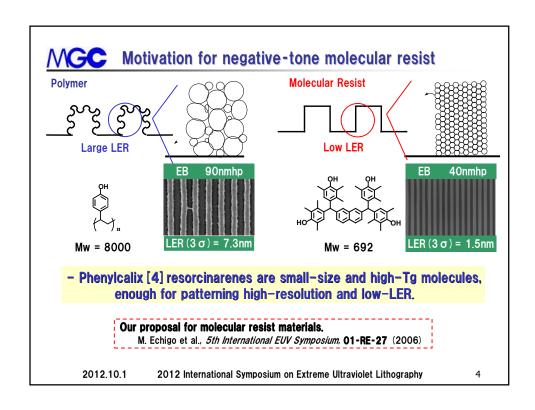
Investigation of correlation with the octanol water partition coefficient and the sensitivity of negative-tone molecular resists

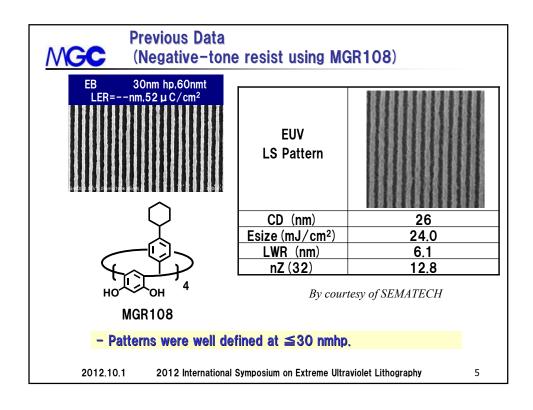
<u>Masatoshi Echigo</u>, Masako Yamakawa, Yumi Ochiai, Yu Okada and Masaaki Takasuka

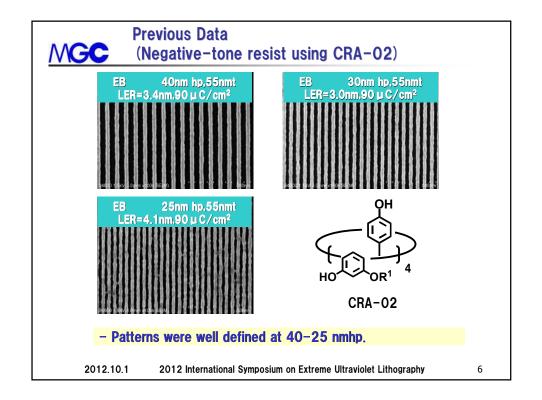
Mitsubishi Gas Chemical Company, Inc.

1


MGC Motivation for Negative-Tone Resist


Table LITH4a	Resist I	Require	ments-	-Near-te	20	07 17	RS	Road	map
Year of Production	2007	2008	2009	2010	2011	2012	2013	2014	2015
DRAM 1/2 pitch (nm) (contacted)	65	57	50	45	40	36	32	28	25
Flash 1/2 pitch (nm) (un-contacted poly)	53.5	45.0	40.1	35.7	31.8	28.3	25.3	22.5	20.0
MPU gate in resist length	(nm)	23	20 34	30	40 16 27	30 14 24	21	28 11 10	25 10
Resist Characteristics *									
Resist meets requirements for gate resolution and gate CD control (nm, 3 sigma) **†	2.6	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Resist thickness (nm. single layer) ***	105- 190	90- 160	80- 145	70- 130	60- 115	55- 100	50- 90	45- 80	40- 75
PEB temperature sensitivity (nm/C)	1.75	1.5	1.5	1.5	1.5	1.5	-1	1	
Backside particle density (particles/cm²)	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Back surface particle diameter: lithography and measurement tools (nm)	120	120	100	100	100	100	75	75	75
Defects in spin-coated resist films (#/cm²) †	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Minimum defect size in spin-coated resist films (nm)	40	35	30	30	20	20	20	20	10
Defects in patterned resist films, gates, contacts, etc. (#/cm²)	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.01
Minimum defect size in natterned resist (mm)	40	35	30	20	20	20	20	20	10
LWR (3sigma) <8% of CD	3.4	3.0	2.7	2.4	2.1	1.9	1.7	1.5	1.3
vejects in spin-couteu resist jums joi uouvie patterning (#/cm²)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Backside particle density for double patterning (#/cm2)	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14


Negative-tone resists are limitedly influenced by flare. We believe Negative-tone resist can achieve these required properties.


2012.10.1

2012 International Symposium on Extreme Ultraviolet Lithography

The purpose of this study

Investigation of correlation with the octanol water partition coefficient (ClogP) and the sensitivity at a dose of 50 nmhp of negative-tone molecular resists.

The octanol water partition coefficient logP is used in QSAR studies and rational drug design as a measure of molecular hydrophobicity.

Hydrophobicity affects drug absorption, bioavailability, hydrophobic drug-receptor interactions, metabolism of molecules, as well as their toxicity.

LogP has become also a key parameter in studies of the environmental fate of chemicals.

The values of the octanol water partition coefficient were measured by ChemProp Pro for Chem 3D.

2012.10.1

2012 International Symposium on Extreme Ultraviolet Lithography

7

MGC

General synthesis of HP-CRA

HO OH
$$R^{1}$$
-Br HO OR^{1}

OH OH

Six HP-CRA derivatives as a mixture of various isomers were synthesized in high yields (99%).

2012.10.1

2012 International Symposium on Extreme Ultraviolet Lithography

MGC General synthesis of AP-CRA

HO
$$OH$$
 $+$
 R^2
 H^+
 OH
 H^+
 OH
 OH

Two AP-CRA derivatives as a mixture of various isomers were synthesized in high yields (99%).

2012.10.1 2012 International Symposium on Extreme Ultraviolet Lithography

MGC Experiment (Resist composition)

	Matrix	PAG	Cross-Linker	Quencher	Solvent
Resist A	HP-CRA-01				
Resist B	HP-CRA-02				
Resist C	HP-CRA-03				
Resist D	HP-CRA-04				DOME
Resist E	HP-CRA-05	PAG-1	HMMM	Q-1	PGME
Resist F	HP-CRA-06				
Resist G	AP-CRA-07				
Resist H	AP-CRA-08				

PAG-1 : sulfonium sulfonate

HMMM : hexamethoxymethylmelamine

Q-1 : amine

PGME : propylene glycol monomethyl ether

2012.10.1 2012 International Symposium on Extreme Ultraviolet Lithography

Experiment (EB Patterning Evaluations)

Apparatus:

Ultra—High Precision EB Lithography System (ELS—7500: Acceleration Voltage 50 keV) at Mitsubishi Gas Chemical (MGC)

Process Conditions:

Substrate: Organic layer (UL) Film Thickness: 30—60nm PB&PEB: 110°C/90s Dev.: TMAH 0.26N 60s

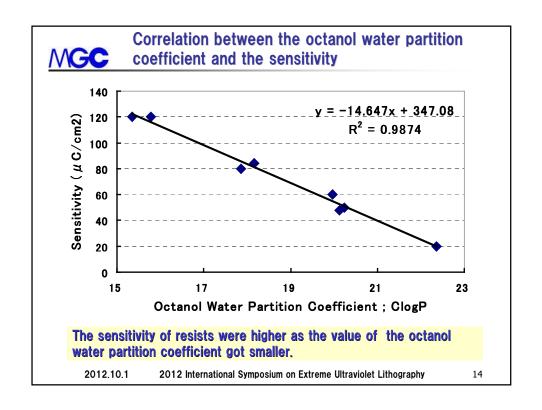
Analysis Conditions:

SEM: \$4800

2012.10.1 2012 International Symposium on Extreme Ultraviolet Lithography

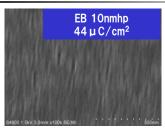
11

MGC


Characteristics of CRAs (1/2)

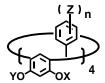
Matrix	Model Structure	Dissolution rate (nm/min)	ClogP	Sensitivity (µ C/cm²)
HP-CRA-01	OH HO HO A	> 50	18.16	84
HP-CRA-02	## ## ## ## ## ## ## ## ## ## ## ## ##	> 50	15.78	120
HP-CRA-03	OH HOO C	> 50	20.24	50
HP-CRA-04	OH OH	> 50	17.85	80

2012.10.1


2012 International Symposium on Extreme Ultraviolet Lithography

Matrix	Model Structure	Dissolution rate (nm/min)	ClogP	Sensitivity	
HP-CRA-05		> 50	22.36	20	
HP-CRA-06	ÖH OH → 100	> 50	19.97	60	
AP-CRA-07	HO OH 4	> 50	20.12	48	
AP-CRA-08	HO OH 4	> 50	15.35	78	





Highlight Data (New Resist) - Update -

calix [4] resorcinarene derivative

By using new calix [4] resorcinarene derivative,
 sub 30nm hp patterns were resolved at the high sensitivity

2012.10.1

2012 International Symposium on Extreme Ultraviolet Lithography

15

MGC Summary

- We invested of correlation with the octanol water partition coefficient and the sensitivity of negative-tone molecular resists based on calix [4] resorcinarene (CRA) by Electron Beam Lithography (EBL).
- The sensitivity of negative-tone molecular resists were higher as the value of the octanol water partition coefficient got smaller.
- It was confirmed that the octanol water partition coefficient was useful to the guess of sensitivity of negative-tone molecular resists.
- Furthermore, we have developed new calix [4] resorcinarenes showing well-defined sub 20nm half-pitch patterns.
- Future study is underway to improve resist performance through material and process optimization to evaluate resist performance by EUV lithography (EUVL).

2012.10.1

2012 International Symposium on Extreme Ultraviolet Lithography